
Object Oriented Software Testing

P.D.Ratna Raju, Suresh.Cheekaty, HarishBabu.Kalidasu

Priyadarshini Institute of Tech& Science
Tenali; Guntur(Dist),INDIA

Abstract:A test case is a set of conditions or variable and input that
are developed for a perticular goal or objective to be achieved on a
certain application to judge its capabilities or features.By an
automated testing tool, we mean a tool that automates a part of the
testing process. It can include one or more of the following
processes: test strategy generation, test case generation, test data
generation, reporting and results. By Object- oriented software can
mean a software designed using OO approach and implemented
using a OO language.As describe later, there is a lack of
specifications as compared to program code is that specifications
are generally correct where as code is flawed. Moreover, with
software engineering principles firmly established in the industry,
most of the software developed nowadays follows all the steps of
Software Development Life Cycle (SDLC). For this work, UML
specifications created in Rational Rose are taken. UML has become
the de- facto standard for analysis and design of OO
software.Testing of OO software is different from testing software
using procedural language. Several new challenges are posed. In the
part most of the testing methods for testing OO software were just a
simple extension of existing methods for conventional software.
However, they have been shown to be not very appropriate. Hence,
new technology have bee this tool provides features for testing at
unit (class) level as well as integrating level. Further a maintenance-
level component has also been incorporated. Results of applying this
tool to sample Rational Rose files have been incorporated, and have
been found to be satisfactory.. Testing is conducted at 3 levels: Unit,
integration and system. At the system level there is no difference
between the testing techniques used for OO software and other
software created using a procedural language, and hence, co It
might take more than one test case to determine the true
functionality of the application being tested. Every requirement or
objective to be achieved needs atleast one test case.some software
development methodologies like Rational Unified Process(RUP)
recommend creating atleast two test cases for each requirement or
objective ; one for performing testing through positive perspective
and the other through negative perspective.

Keywords: Testing, Unit, integration, system, UML, control flow
graph, class, object, SDCL, Object-oriented, state transition
diagram, design, analysis, implementation, black-box, white-box.

I. INTRODUCTION:
 Test Case Structure
A formal written test case comprises of three parts-
A. Information: Information consists of general information
about the test case. Information incorporates Identifier, test
case creator, test case version, name of the test case,purpose
or brief description and test case dependencies.
B. Activity: Activity consists of the actual test case
activities.Activity contains information about test case
environment,activities done at test case
initialization,activities to be done after test case is
performed,step by step actions to be done while testing and
the input data that is to be supplied for testing.

C. Results: Results are outcomes of a performed test
case.Result data consists of information about expected
results and the actual result.

Designing Test Cases
Test cases should be designed and written by someone who
understands the function or technology being tested. A test
case should include the following information-
*Purpose of the test
*Software requirements and Hardware requirements (if any)
*Specific setup or configuration requirements
*Description on how to perform the task(s)
*Expected results or success criteria for the test

Designing test case can be time consuming in a testing
schedule,but they are worth giving time because they can
really avoid unnecessary retesting or debugging or at least
lower it.Organization can take the test case approach in their
own context and according to their own pespective.Some
follow a general step way approach while others may opt for
a more detailed and complex approach. It is very important
for you to decide between the two extremes and judge on
what would work the best for you.Designing proper test cases
is very vital for your software testing plan as a lot of
bugs,ambiguities,inconsistencies and slip ups can be
recovered in time as also it helps in saving your time on
continuous debugging and re-testing test cases.
Software testing is a phase of SDLC that entails much effort,
time out and cost. Often, testing phase is the single largest
contributor towards the whole development time. Testing can
not only uncover bugs in the program, but also flaws in
design of the software. To make the testing phase quicker,
easier and more efficient, automated testing tools are being
used. These tools help in test case generation, reporting
results and variance from expected once(if any) , bugs in
code and each other flaws. Usage of these
tools speed up the testing process and also ensures reduction
in the probability of a bug/error being uncovered later.
However application of these automated testing tools in
software testing has its own disadvantages, namely, learning
the tool to use it, adapting it to your purpose, and also the tool
may not provide specific functionality which you may desire.
Object-oriented testing essentially means testing software
developed using object oriented methodology.
The objectives of developing the testing tools for software
testers and maintainers are:
(1) To help them understand the structures of, and relation
between, the components of an OO program.

P.D.Ratna Raju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2189-2192

2189

(2) To give them a systematic method and guidance to
perform OO testing and maintenance.
(3) To assist then to find better test strategies to reduce their
efforts.
(4) To facilitate them to prepare test cases and test scenarios,
and
(5) To generate test data and to aid them in setting up test
harnesses to test specific components.
The target users for Testing Tools are mainly software testers
and maintainers. As the tools would provide valuable insight
into programmer’s structure and behavior plus automate the
testing process to a certain extent, it would be highly useful
for testers. Also the tool would be beneficial to maintainers
who would like to study change impact (here they will be
aided by the program’s analysis done by the tool), and
perform regression testing.

II. OBJECTIVE

The objective of this paper is: design and development of an
automated testing tool for object-oriented software. the aim
of this paper is to study various established as well as
emerging techniques, with special focus on those for object-
oriented software; and develop a tool which is based upon the
technique which are most suitable due to their effective
applicability to OO program.

III. THE TEST MODEL AND ITS CAPABILITES:

The tools for automated testing are based upon certain
models of software/programs and algorithms. This
mathematically defined test model consists of following types
of diagrams:
1. The class diagram (object relation diagram)
2. The control flow graph (of a method), and
3. The state transition diagram (of a class)

A. CLASS DIAGRAM:
A class diagram or an object relation diagram (ORD)
represents the relationships between the various classes and
its type. Types of relationships are mainly: inheritance,
aggregation and association.

B. CONTROL FLOW GRAPH:
A control flow graph represents the control structure of a
member function and its interface to other member functions
so that a tester will know which ata is used and/or updated
and which other functions are invoked by the member
function.

C. STATE TRANSITION DIAGRAM:
which are shared among A STD or an object state Diagram
(OSD) represents the state behavior of an class. Now the state
of a class is embodied in its member variables its methods.
The OSD shows the various states of a class (Various
member variable values), and transitions between
them(method invocations).

IV. BASED ON SOFTWARE DESIGN/SPECIFICATION:

These diagrams are taken from the design models prepared as
part of software Development process. UML (Unified
Modeling Language) has become the defacto standard for
object-oriented analysis and design (OOAD). UML provides
features for specifying all the above types of diagrams.
Rational Rose Suite is the most widely used
Methodology adopted:
For carrying out this paper, following methodology has been
adopted:
1 .Literature survey: This involves study of existing
techniques and strategies, with special emphasis on object-
oriented testing.
2 .Analysis of problem: this incorporates analyzing the
problem. Out of literature survey emerged; the right
techniques and tactics for object oriented software testing
also existing methods have been modified upon where ever
necessary.
3 .Software tool development: since the ultimate objective of
this paper is to develop an automated testing tool, all the
software development has been followed.
(1)Analysis
(2)Design
(3)Implementation
(4)Testing
(5)Iterative process

Existing Testing Techniques Surveyed:
Black Box Testing:
(1)Random testing
(2)Equivalence partitioning
(3)Boundary value analysis
(4)State transition-based testing
White Box Testing:
(1)Basic path testing
(2)Loop testing
(3)Mutation testing
(4)Data flow-based testing

Testing Techniques To Testing Object-Oriented Software:
Certain subset of testing techniques covered in the study can
be favorably applied to object-oriented programs. At various
levels of testing of object oriented software, techniques which
can be applied are:
1.unit testing
2.class testing
3.method testing
4.integration testing
5.system testing

Challenges To Testing Object-Oriented Systems:
A main problem with testing object- oriented system is that
standard testing methodologies may not be useful. Smith and
Robson say that current IEEE testing definition and
guidelines cannot be applied blindly to OO testing, because
they follow the Von Neumann model of processing. This
model describes a passive store with active processor acting

P.D.Ratna Raju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2189-2192

2190

upon store. It requires that there be an oracle to determine
whether or not the program has functioned as required, with
comparison of performance against a defined specification.
“They also present the following definition of the testing
process: “the process of existing the routines provide by an
object with the goal of uncovering errors in the
implementation of the routines or the state of the object or
both.”
Smith and Robson sat that the process of testing OO software
is more difficult than the traditional approach, since programs
are not executed in a sequential manner. OO components can
be combined in an arbitrary order; thus defining test cases
become a search for the order of routine that will cause an
error. Siepmann and Newton agree that the state-based nature
OO systems can have a negative that will cause an error.
Siepmann and Newton state that the iterative nature of
developing OO systems requires regression testing between
iterations. Smith and Rabson state that inheritance is
problematic, since the only way to test a Subclass is to flatten
it by collapsing the inheritance structure until it appears to be
a single class. When this is done, the testing effort for the
super class is not utilized; therefore, duplicate testing takes
place

V. A SURVEY OF TESTING TECHNIQUES FOR
OBJECT-ORIENTED SYSTEMS:

Most research on object- oriented (oo) paradigms has been
focused on analysis, design, and programming fundamentals.
Testing the systems that are created with these paradigms has
been considered an afterthought. Traditional testing
techniques must be evaluated to determine if they are still
useful with respect to object-oriented systems, and new
techniques must be developed.

VI. COMPONENTS OF THE OO TESTING TOOL:

The tool for automated testing of OO programs has the
following components/features:
1. GUI
2. Import File Feature
3. Change Impact Identifier for classes
4. Maintenance Tools
5. Logging results
6. Diagram Displayer
7. Class Diagram
8. State Transition Diagram
9. Control Flow Graph
10. Test Tools:

(i) Test order generator for testing of classes at
integration level

(ii) Test case generator for testing classes
11. Basis path generator for member functions/methods

VII. LATEST RESEARCH:
The latest research in the field of object- oriented software
testing. Tonella [20] proposes a method for evolutionary
testing of classes. In this paper, a genetic algorithm is

exploited to automatically produce test cases for the unit
testing of classes in a generic usage scenario. As, object
oriented programming promotes reuse of classes in multiple
contexts, the unit texting of classes cannot make too strict
assumptions on the actual method invocation sequences,
since these vary from application to application . Traore [21]
discusses a test model for object-oriented programs, based on
formal specifications like UML, built from user requirements.
Pezze & young [22] have highlighted some important issues
to be considered while testing object-oriented programs.
Object oriented software requires reconsidering and adapting
approaches to software test and analysis.

CONCLUSION:

*OBJECT ORIENTED TESTING LEVELS-
UNIT&SYSTEM SAME AS TRADITIONAL LEVELS
*OBJECT ORIENTED INTEGRATION TESTING IS
DIFFERENT AND MORE COMPLEX
*OBJECT ORIENTED OPTIMAL TEST ORDER SAVES
*TOOLS REQUIRED TO SCALE UP 00 TESTING
*LIMIT DESIGNERS TO STRAIGHT INHERITANCE (NO
REDEFINING)

This paper dealt with design and development of an
Automated Testing Tool for OO software. The tool mainly
focuses on testing design specifications for OO software
specification as compared to program code is that
specification are generally correct

Development Life Cycle (SDLC) are adhered to. For this
work, UML specifications are considered .UML has become
the defector standard standard for analysis and design of OO
software. UML designs created in Rational Rose are used by
the tool as input. The main components of this tool are:

1. Test Order Generator for classes
2. Test Case Generator for State-based classes testing
3. Change Impact Identification for classes

FUTURE WORK:
Future work would include extending the tool to incorporate
more functionality. Both testing and maintenance
components can be added. Some additions can be:
1. Incorporating a fully functional Method Basis path

generator module.
2. Providing both test case Generation as well as Execution.

The user would be able to provide test data; and the test
cases generated would be executed using the test data as
input.

3. Reporting code coverage achieved after test set has been
executed. Various test adequacy criteria like statement
coverage, branch coverage, and path coverage can be
reported upon.

4. Metrics: certain program metrics like lines of code
(LOC), functions points, interfaces , etc.., can be
reported upon.

P.D.Ratna Raju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2189-2192

2191

REFERENCES:
[1] GAO, J.Z.Kung, D.Hsia, P.Toyoshmia, Y.Chen, C.”Object state testing

for object-oriented programs” Computer software and Applications
Conference, 1995 COMPSAC 95. Proceedings, Nineteenth Annual
International, 9-11-Aug. 1995 pages: 232-238.

[2] Ugo Buy, Alessandro Orso ,Mauro pezze “ Automated Testing of
Classes” August 2000 ACM SIGSOFT software Engineering Notes,
Proceedings of the 2000 ACM SOFTWARE international symposium
on software testing and analysis, Volume 25 Issue 5.

[3] Mary Jean Harrold , Gregg Rothermel “Performing data flow testing on
classes ’’ December 1994 ACM SIGSOFT software Engineering
Notes, PROCEEDINGS of the 2nd ACM SIGSOFT symposium on
foundations of software engineering, volume 19 Issue 5

[4] Frank l, Elaine Weyuker “An applicable family of data flow testing
criteria ’’ IEEE Transactions on software, vol. 14, no.10,1988.

[5]M. Smith and D.Robson “A Framework for testing object-oriented
programs’’Journal of object-oriented programming, June 1994,pp.45-
53.

[6] Doong, frank l “Case Studies on testing OO programs’’ Communications
of the ACM, Vol.25, No.5, 1991.

[7] Doong ,frank l “ASTOOT approach to testing OO programs” ACM
transactions on software Engineering and
Methodology,vol.3,No.2,1994 .

[8]Kung, GAO, Hsia “Developing an OO testing and maintenance
environment” Communications of the ACM, vol.38, No.10, 1995.

[9]Jorgensen, Erikson “object-oriented Integration Testing” Communication
of the ACM, Vol.37, No.9, 1994.

P.D.Ratna Raju et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2189-2192

2192

